電場がある程度以上の速さで変化する場合、誘電率は定数にはならず、電場の振動数 ω の関数である誘電関数 ε(ω) として記述される。誘電関数には電気伝導やバンド間遷移による損失が発生するため、一般に以下のような複素関数となる。
ε(ω) = ε1(ω) + iε2(ω)
このうち実数部 ε1(ω) は電場の振動との位相差および分極の大きさを与える。なお、ω=0 のときの実数部 ε1 は上述した誘電率 ε にほかならない。また、虚数部 ε2(ω) は電気伝導やバンド間遷移による誘電損失を与えている。
ある物質の誘電関数を調べることで、その物質の電子物性、光物性に関する多くの情報を得ることができる。光吸収スペクトルの測定から、虚数部 ε2 を得ることができる。これにクラマース・クローニッヒの関係式 (Kramers-Kronig relations) を用いることで、実数部 ε1 を得ることができる。また、電子エネルギー損失分光 (EELS) の測定結果は ε2/(ε12 + ε22)(損失関数)を与える。
ブログ一覧 | 日記
Posted at
2010/12/07 14:07:44