テキストを開くと夢の国への誘いが。。。
公式を覚えようとしても睡魔までが襲う・・・
「三角関数」
特に sin, cos は幾何学的にも解析学的にも良い性質を持っているので、様々な分野で用いられる。例えば波や電気信号などは正弦関数と余弦関数を組み合わせることで表現することができる。この事実はフーリエ級数およびフーリエ変換の理論として知られ、音声などの信号の合成や解析の手段として利用されている。他にもベクトルの外積や内積は正弦関数および余弦関数を用いて表すことができ、ベクトルを図形に対応づけることができる。初等的には、三角関数は実数を変数とする一変数関数として定義される。三角関数の変数の対応するものとしては、図形のなす角度や、物体の回転角、波や信号のような周期的なものに対する位相などが挙げられる。
三角関数に用いられる独特な記法として、三角関数の累乗と逆関数に関するものがある。通常、関数 f (x) の累乗は (f (x))2 = f (x)・f (x) や (f (x))−1 = 1 / f (x) のように書くが、三角関数の累乗は sin2x のように書かれることが多い。逆関数については通常の記法 (f −1(x)) と同じく、sin−1x などと表す(この文脈では従って、三角関数の逆数は分数を用いて
1
sin x
のように、あるいは (sin x)−1 などと表される)。文献あるいは著者によっては、通常の記法と三角関数に対する特殊な記法との混同を避けるため、三角関数の累乗を通常の関数と同様にすることがある。また、三角関数の逆関数として −1 と添え字する代わりに関数の頭に arc とつけることがある(たとえば sin の逆関数として sin−1 の代わりに arcsin を用いる)。
三角関数に似た性質を持つ関数として、指数関数や双曲線関数、ベッセル関数などがある。また、三角関数を利用して定義される関数としてしばしば応用されるものにsinc関数がある。
と、言う事ですがMALTのECUはシャッタが-・・
まーちのカタログが手に入ったから其方へ・・・・
意思弱いね~。。。。
去年の事が反映できない。。
フレミングの左手の法則・・ 十月まで「間」が無いのに
ル・マン(愛知のメーカーが優勝でき無かった・・日本車がんばれ!)
二年後には日産が遣れるでしょう(総合優勝。戻ったら・・・・・)
ブログ一覧 |
日常 | 日記
Posted at
2016/06/19 22:42:13